JWJU的同学们沉迷刷题,无法自拔,参加桌游活动的人数越来越少。他们最常玩的飞行棋屡次因为参与人数不够而无法进行。于是桌游协会的会长$sys.$发明了一款两个人就能玩的桌游!游戏的规则如下:
$sys.$邀请鸡尾酒参与了这个游戏,并让鸡尾酒先手,如果双方足够聪明 (不用如果,鸡尾酒当然足够聪明),他们会尽量使自己获胜,若不能获胜,则尽量获得平局。对于某一场模数为 $n$ 的比赛,$sys.$和鸡尾酒会进行 $k$ 场游戏,现在告诉你每一次游戏的初始数字 $a, b$ 以及模数 $n$,请问对于每一场游戏,谁会获胜(或平局)?
第一行一个 $t$,代表输入的数据组数。接下来有 $t$ 组数据,每组数据的第一行包含两个正整数 $n, k$,接下来 $k$ 行,每行包含两个正整数 $a,b$,表示一场游戏的开局。
若先手必胜,输出cocktail,后手必胜,输出sys,若平局,输出draw。
cocktail
sys
draw
2 8 1 3 5 6 1 2 2
cocktail sys