C0922 [SDOI2011]火星移民

内存限制:512 MB 时间限制:4000 ms

题目描述

在2xyz年,人类已经移民到了火星上。由于工业的需要,人们开始在火星上采矿。火星的矿区是一个边长为 $N$ 的正六边形,为了方便规划,整个矿区被分为 $6 \times N \times N$ 个正三角形的区域(如图1)。

image.png

整个矿区中存在 A 矿,B 矿,C 矿三个矿场,和 a 厂,b 厂,c 厂三个炼矿厂。每个三角形的区域可以是一个矿场、炼矿厂、山地、或者平地。现在矿区管理局要求建立一个交通系统,使得矿场和对应炼矿厂之间存在一条公路,并且三条公路互不交叉(即一个三角形区域中不存在两条以上运输不同矿的公路)。两个三角形区域是相邻的当且仅当这两个三角形存在公共边,只有相邻的两个区域之间才能建一段路,建这段路的费用为 $1$。注意,山地上是不能建公路的。由于火星金融危机的影响,矿区管理局想知道建立这样一个交通系统最少要花多少费用。更多的,当局向知道有多少种花费最小的方案。

输入格式

第 $1$ 行一个整数 $N$。表示这个矿区是边长为 $N$ 的正六边形。

接下来有 $6 \times N \times N$ 的整数,分为 $2 \times N$ 行,表示矿区当前区域的情况。$0$ 表示平地,$1,2,3$ 表示对应的矿区或者炼矿厂,$4$ 表示山地。(样例1对应图2)。可能有多组数据。

输出

对于每组数据,包含两个整数,表示最小费用和达到最小费用的方案数。如果找不到符合要求的方案,输出 $-1 -1$。由于方案数可能过大,所以请把方案数 $\bmod 1000000007$

样例

样例输入 1

2 0 1 0 0 0 0 0 2 0 4 0 0 0 0 4 3 0 3 2 0 0 0 1 0

样例输出 1

18 1

样例输入 2

3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 2 0

样例输出 2

44 1

提示

对于 $100\%$ 的数据,$N≤6$