在 Mars 星球上,每个 Mars 人都随身佩带着一串能量项链。在项链上有 $N$ 颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是 Mars 人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为 $m$,尾标记为 $r$,后一颗能量珠的头标记为 $r$,尾标记为 $n$,则聚合后释放的能量为 $m \times r \times n$(Mars 单位),新产生的珠子的头标记为 $m$,尾标记为 $n$。
需要时,Mars 人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
例如:设 $N=4$,$4$ 颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号 ⊕ 表示两颗珠子的聚合操作,($j$ ⊕ $k$)表示第 $j$,$k$ 两颗珠子聚合后所释放的能量。则第 4、1 两颗珠子聚合后释放的能量为:
(4⊕1)=10*2*3=60。
这一串项链可以得到最优值的一个聚合顺序所释放的总能量为
((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。