有 $N$ 堆纸牌,编号分别为 $1,2,…,N$。每堆上有若干张,但纸牌总数必为 $N$ 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 $1$ 堆上取的纸牌,只能移到编号为 $2$ 的堆上;在编号为 $N$ 的堆上取的纸牌,只能移到编号为 $N-1$ 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如$N=4$,$4$堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动 3 次可达到目的:
从 ③ 取 4 张牌放到 ④(9 8 13 10)-> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到 ①(10 10 10 10)。